\qquad
\qquad

1. The vectors $\boldsymbol{u}, \boldsymbol{v}$ are given by $\boldsymbol{u}=3 \boldsymbol{i}+5 \boldsymbol{j}+\boldsymbol{k}, \boldsymbol{v}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}$.
a.) Find the unit vectors in the same directions as \boldsymbol{u} and \boldsymbol{v}.
b.) Find $u \times v$
2. Consider the points $\mathrm{A}(1,2,1), \mathrm{B}(0,-1,2), \mathrm{C}(1,0,2)$ and $\mathrm{D}(2,-1,-6)$.
(a) Calculate $\overrightarrow{A B} \times \overrightarrow{B C}$.
(b) Hence, or otherwise find the area of triangle ABC .
(c) Find the Cartesian equation of the plane P containing the points A, B and C .
3. A triangle has its vertices at $\mathrm{A}(-1,3,2), \mathrm{B}(3,6,1)$ and $\mathrm{C}(-4,4,3)$. Find $m \angle B A C$.
4. The diagram shows a cube OABCDEFG.

Let O be the origin, (OA) the x-axis, (OC) the y-axis and (OD) the z-axis. Let M, N and P be the midpoints of [FG], [DG] and [CG], respectively. The coordinates of F are (2, 2, 2).
(a) Find the position vectors $\overrightarrow{\mathrm{OM}}, \overrightarrow{\mathrm{ON}}$ and $\overrightarrow{\mathrm{OP}}$ in component form.
(b) Find $\overrightarrow{M P} \times \overrightarrow{M N}$.
(c) Hence,
(i) calculate the area of the triangle MNP;
(ii) show that the line (AG) is perpendicular to the plane MNP;
(iii) find the equation of the plane MNP.
5. The angle between the vector $\boldsymbol{a}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}$ and the vector $\boldsymbol{b}=3 \boldsymbol{i}-2 \boldsymbol{j}+m \boldsymbol{k}$ is 30°. Find the values of m.

Topic Overview

- Unit vector in particular direction
- Converting between all 3 forms of a line (vector, parametric, Cartesian)
- Finding angle formed between any combination of vectors, lines, and planes (window formulas)
- Computing dot product and its interpretation (type of angle including acute, right, obtuse)
- Computing cross product and its applications, including normal vectors of planes, and areas of parallelograms and triangles
- Equations of planes in Cartesian form using coordinates and normal vectors

Topic Overview

- Unit vector in particular direction
- Converting between all 3 forms of a line (vector, parametric, Cartesian)
- Finding angle formed between any combination of vectors, lines, and planes (window formulas)
- Computing dot product and its interpretation (type of angle including acute, right, obtuse)
- Computing cross product and its applications, including normal vectors of planes, and areas of parallelograms and triangles
- Equations of planes in Cartesian form using coordinates and normal vectors

Topic Overview

- Unit vector in particular direction
- Converting between all 3 forms of a line (vector, parametric, Cartesian)
- Finding angle formed between any combination of vectors, lines, and planes (window formulas)
- Computing dot product and its interpretation (type of angle including acute, right, obtuse)
- Computing cross product and its applications, including normal vectors of planes, and areas of parallelograms and triangles
- Equations of planes in Cartesian form using coordinates and normal vectors

