Period: _____

- 1. The vectors \boldsymbol{u} , \boldsymbol{v} are given by $\boldsymbol{u} = 3\boldsymbol{i} + 5\boldsymbol{j} + \boldsymbol{k}$, $\boldsymbol{v} = \boldsymbol{i} 2\boldsymbol{j} + 3\boldsymbol{k}$.
 - a.) Find the unit vectors in the same directions as \boldsymbol{u} and \boldsymbol{v} .

b.) Find $u \times v$

- **2.** Consider the points A(1, 2, 1), B(0, -1, 2), C(1, 0, 2) and D(2, -1, -6).
 - (a) Calculate $\overrightarrow{AB} \times \overrightarrow{BC}$.
 - (b) Hence, or otherwise find the area of triangle ABC.
 - (c) Find the Cartesian equation of the plane *P* containing the points A, B and C.

3. A triangle has its vertices at A(-1, 3, 2), B(3, 6, 1) and C(-4, 4, 3). Find $m \angle BAC$.

4. The diagram shows a cube OABCDEFG.

Let O be the origin, (OA) the *x*-axis, (OC) the *y*-axis and (OD) the *z*-axis. Let M, N and P be the midpoints of [FG], [DG] and [CG], respectively. The coordinates of F are (2, 2, 2).

(a) Find the position vectors \overrightarrow{OM} , \overrightarrow{ON} and \overrightarrow{OP} in component form.

(b) Find $\overrightarrow{MP} \times \overrightarrow{MN}$.

(c) Hence,

- (i) calculate the area of the triangle MNP;
- (ii) show that the line (AG) is perpendicular to the plane MNP;
- (iii) find the equation of the plane MNP.
- 5. The angle between the vector $\mathbf{a} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ and the vector $\mathbf{b} = 3\mathbf{i} 2\mathbf{j} + m\mathbf{k}$ is 30°. Find the values of *m*.

Topic Overview

- Unit vector in particular direction
- Converting between all 3 forms of a line (vector, parametric, Cartesian)
- Finding angle formed between any combination of vectors, lines, and planes (window formulas)
- Computing dot product and its interpretation (type of angle including acute, right, obtuse)
- Computing cross product and its applications, including normal vectors of planes, and areas of parallelograms and triangles
- Equations of planes in Cartesian form using coordinates and normal vectors

Topic Overview

- Unit vector in particular direction
- Converting between all 3 forms of a line (vector, parametric, Cartesian)
- Finding angle formed between any combination of vectors, lines, and planes (window formulas)
- Computing dot product and its interpretation (type of angle including acute, right, obtuse)
- Computing cross product and its applications, including normal vectors of planes, and areas of parallelograms and triangles
- Equations of planes in Cartesian form using coordinates and normal vectors

Topic Overview

- Unit vector in particular direction
- Converting between all 3 forms of a line (vector, parametric, Cartesian)
- Finding angle formed between any combination of vectors, lines, and planes (window formulas)
- Computing dot product and its interpretation (type of angle including acute, right, obtuse)
- Computing cross product and its applications, including normal vectors of planes, and areas of parallelograms and triangles
- Equations of planes in Cartesian form using coordinates and normal vectors