

5.1-5.2 Quiz

- Thursday 1/20, Section 5.1 and 5.2
- Topics:
- Classifying triangles
 Sum of the interior angles in a triangle
 - Exterior angle theorem
 - Perimeter of triangles
- Algebra:
 - Solving equations
 - Ratios
 - System of equations
 - Factoring

Polygons have/are:

- Plane figures (2-dimensional)
- 2. At least 3 sides (triangles, quadrilaterals,...)
- Closed figures all sides connected with no gaps
 All "sides" are segments no curves!

# of Sides	Polygon Name		0:00:00
3	Triangle		0 7 7 7
4	Quadrilateral		
5	Pentagon		
6	Hexagon		
7	Heptagon		
8	Octagon		
9	Nonagon	[7] man	
10	Decagon	13-9m	
12	Dodecagon	13-gon 7 ₁₀₀ -gon	
15	Pentadecagon	100-94	
n	n-gon		
	•		

Angles of a Polygon - Work with a partner/group

- 1.) Each student will need a protractor and a ruler/straightedge.
- 2.) Draw $\frac{1 \text{ triangle}}{3 \text{ sides}}$, 1 $\frac{1 \text{ quadrilateral}}{4 \text{ sides}}$, and $\frac{1 \text{ pentagon}}{5 \text{ sides}}$ (Not too small!)
- 3.) Using your protractor, find the measure of each angle in all 3 figures. Be as accurate as possible to the nearest degree.
- 4.) Find the sum of all the angles in each figure.
- 5.) In your groups, come up with a prediction for what you think the sum of the angles in a hexagon (6 sides) will be. Be able to explain!

Polygon Formulas							
					\bigcirc		
# Sides	3	4	5	6	7		
# Triangles Inside	t	2	3	4	(5)		
Sum of Angles	180°	360° (SYO)720°	900°		
$\frac{\text{Sum of Angles}}{S = 180(n-2)} \qquad n = \text{number of sides}$							

Mental Floss: Mon, Jan 24th

a.) Find the sum of the angles in a dodecagon.

b.) Find the name of the polygon whose angles add up to 1980°.

$$\frac{180(-2)}{100} = \frac{1980}{180} \quad n = 1 = 11$$

c.) Can a polygon have angles whose sum is 2000°?

Summary of all Formulas

#1 and 2 apply to all polygons

- 1.) Sum of Interior Angles $S_I = 180(n-2)$
- 2.) Sum of Exterior Angles $S_E = 360$

$\underline{\#3}$ and 4 apply to only regular (or equiangular) polygons

- 4.) Measure of Each Exterior Angle $A_E = \frac{360}{n}$