IB Math HL2 Integration Part 1 – Review Name: _____

Indefinite Integration

1.)
$$\int (4x+7)^5 \cdot dx$$
 2.) $\int \frac{2}{\sqrt{1-4x}} \cdot dx$ 3.) $\int (2e^{-3x} + \sqrt[3]{e^x}) \cdot dx$

4.)
$$\int 2^{3-6x} \cdot dx$$
 5.) $\int \frac{1}{3x-10} \cdot dx$ 6.) $\int 4\cos^2 x - 2 \cdot dx$

Definite Integration - These are for practice only. Some of the answers do not exist in terms of area.

7.)
$$\int_{-1}^{0} (2r-1)^4 \cdot dr$$
 8.) $\int_{0}^{2} \frac{x+1}{x^2-1} \cdot dx$ 9.) $\int_{0}^{1} \frac{1}{(2x+1)^3} \cdot dx$

10.)
$$\int_{-1}^{1} \frac{e^x + 4}{e^x} \cdot dx$$
 11.) $\int_{0}^{2} 10^t \cdot dt$ 12.) $\int_{0}^{\pi/2} \sin x \cdot dx$

13.) The derivative of the curve y = f(x) is $2x^2 + 1$. Find f(x) if the graph contains the point (1,0).

<u>Areas</u>

14.) Find the area enclosed by the graphs of $y = x^2$, y = 8 - 2x, and the *x*-axis in quadrant 1.

15.) Find the area enclosed by the graph of $y = \frac{1}{x+1}$, the y-axis, and the line y = 5.

16.) Find the area between the curves y = x - 2 and $y = 4 - x^2$.

17.) The diagram below shows the graph of $y = x^2 - 3x + 2$. Find the area of the shaded region.

18.) The area between the curve $y = ax^2$ and the *x*-axis between -2 and 2 is 20. Find the value of a.

Function Type	Integration Rules (<i>C</i> is the constant of variation)	Notes
1.) Constant	$\int m \cdot dx = mx + c \text{ where } m \text{ is a constant}$	
2.) Constant Multiple	$\int k \cdot f(x) = k \cdot \int f(x)$ where k is a constant	Only works if k is constant.
3.) Power	$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$	Must ignore $n \neq -1$ to avoid division by zero.
4.) Power of -1	$\int x^{-1} \cdot dx = \int \frac{1}{x} \cdot dx = \ln x + c$	This rule takes care of the $n \neq -1$ exception for Power.
5.) Sum and Difference	$\int \left[f(x) \pm g(x) \right] \cdot dx = \int f(x) \cdot dx \pm \int g(x) \cdot dx$	This rule also applies if there are more than 2 terms.
6.) Exponential	$\int m^x \cdot dx = \frac{m^x}{\ln m} + c, \ m \text{ is a constant}$	General rule for exponential.
7.) e ^x	$\int e^x \cdot dx = e^x + c$	Specific instance of Exponential where $\ln e = 1$.
8.) Trig	$\int \sin x \cdot dx = -\cos x + c$	
	$\int \cos x \cdot dx = \sin x + c$	
	$\int \tan x \cdot dx = \ln \left \sec x \right + c$	We can derive this later in the course.

Formulas and Identities

Tangent and Cotangent Identities

$\tan \theta = \sin \theta$	$\cot \theta =$	cosθ
$cos\theta$		$\sin \theta$
Reciprocal Identities		
$\csc \theta = \frac{1}{1}$	$\sin \theta =$	1
cin A		cec A

$$\sec \theta = \frac{1}{\cos \theta} \qquad \qquad \cos \theta = \frac{1}{\sec \theta}$$
$$\cot \theta = \frac{1}{\tan \theta} \qquad \qquad \tan \theta = \frac{1}{\cot \theta}$$

Pythagorean Identities

 $\sin^2 \theta + \cos^2 \theta = 1$ $\tan^2 \theta + 1 = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$

Sum and Difference Formulas

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$

$$\tan\left(\alpha \pm \beta\right) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$
$$= 2\cos^2\theta - 1$$
$$= 1 - 2\sin^2\theta$$
$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$