1.) $\int(4 x+7)^{5} \cdot d x$
2.) $\int \frac{2}{\sqrt{1-4 x}} \cdot d x$
3.) $\int\left(2 e^{-3 x}+\sqrt[3]{e^{x}}\right) \cdot d x$
4.) $\int 2^{3-6 x} \cdot d x$
5.) $\int \frac{1}{3 x-10} \cdot d x$
6.) $\int 4 \cos ^{2} x-2 \cdot d x$

Definite Integration - These are for practice only. Some of the answers do not exist in terms of area.
7.) $\int_{-1}^{0}(2 r-1)^{4} \cdot d r$
8.) $\int_{0}^{2} \frac{x+1}{x^{2}-1} \cdot d x$
9.) $\int_{0}^{1} \frac{1}{(2 x+1)^{3}} \cdot d x$
10.) $\int_{-1}^{1} \frac{e^{x}+4}{e^{x}} \cdot d x$
11.) $\int_{0}^{2} 10^{t} \cdot d t$
12.) $\int_{0}^{\pi / 2} \sin x \cdot d x$
13.) The derivative of the curve $y=f(x)$ is $2 x^{2}+1$. Find $f(x)$ if the graph contains the point $(1,0)$.

Areas

14.) Find the area enclosed by the graphs of $y=x^{2}, y=8-2 x$, and the x-axis in quadrant 1 .
15.) Find the area enclosed by the graph of $y=\frac{1}{x+1}$, the y-axis, and the line $y=5$.
16.) Find the area between the curves $y=x-2$ and $y=4-x^{2}$.
17.) The diagram below shows the graph of $y=x^{2}-3 x+2$. Find the area of the shaded region.

18.) The area between the curve $y=a x^{2}$ and the x-axis between -2 and 2 is 20 . Find the value of a.

Function Type	Integration Rules (c is the constant of variation)	Notes
1.) Constant	$\int m \cdot d x=m x+c$ where m is a constant	
2.) Constant Multiple	$\int k \cdot f(x)=k \cdot \int f(x)$ where k is a constant	Only works if k is constant.
3.) Power	$\int x^{n} \cdot d x=\frac{x^{n+1}}{n+1}+c, n \neq-1$	Must ignore $n \neq-1$ to avoid division by zero.
4.) Power of -1	$\int x^{-1} \cdot d x=\int \frac{1}{x} \cdot d x=\ln \|x\|+c$	This rule takes care of the $n \neq-1$ exception for Power.
5.) Sum and Difference	$\int[f(x) \pm g(x)] \cdot d x=\int f(x) \cdot d x \pm \int g(x) \cdot d x$	This rule also applies if there are more than 2 terms.
6.) Exponential	$\int m^{x} \cdot d x=\frac{m^{x}}{\ln m}+c, m$ is a constant	General rule for exponential.
7.) e^{x}	$\int e^{x} \cdot d x=e^{x}+c$	Specific instance of Exponential where $\ln e=1$.
8.) Trig	$\int \sin x \cdot d x=-\cos x+c$	
	$\int \cos x \cdot d x=\sin x+c$	We can derive this later in the course.

Formulas and Identities

Tangent and Cotangent Identities
$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}$
Reciprocal Identities
$\csc \theta=\frac{1}{\sin \theta} \quad \sin \theta=\frac{1}{\csc \theta}$
$\sec \theta=\frac{1}{\cos \theta} \quad \cos \theta=\frac{1}{\sec \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

$$
\tan \theta=\frac{1}{\cot \theta}
$$

Pythagorean Identities

$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

Sum and Difference Formulas

$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$
Double Angle Formulas
$\sin (2 \theta)=2 \sin \theta \cos \theta$
$\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$

$$
=2 \cos ^{2} \theta-1
$$

$$
=1-2 \sin ^{2} \theta
$$

$\tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

