
 An investigation into directional statistics and the illumination estimation calculations 

necessary to the performance of plausible three-dimensional manipulations of an object in a 
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Introduction 

 The objective of this investigation is to explore directional statistics with the ultimate 

goal of analyzing how one can calculate the illumination estimation necessary to the 

performance of plausible three-dimensional manipulations of an object in a photograph. In order 

to accomplish this, I will first be examining the different elements of directional statistics. Then, 

I will be analyzing circular distribution and providing a two-dimensional example. Finally, I will 

be exploring von Mises-Fisher distribution and presenting a three-dimensional example. 

 The topic is of significance because one of the factors necessary to the creation of a 

conceivable photograph manipulation is the correction of illumination discrepancies; to complete 

this task, one must first estimate the illumination of the object. I find it extremely interesting that 

if any images, including those with historical significance, can be edited with plausible results, 

photography itself is rendered as unreliable as the spoken or written word; the common idiom “a 

picture is worth a thousand words” thus becomes completely void.  

 According to an examination conducted by researchers at Clarkson University, Carnegie 

Mellon University, and the University of California, Berkeley, the photograph I  is a function of 

the object geometry X , the object appearance T , and the environmental illumination L

(Kholgade Banerjee). I will be concentrating on the environmental illumination L . I will be 

examining directional statics as a whole and the use of von Mises-Fisher distributions, the most 

common type of circular distribution, in the calculation of the estimation necessary to the 

performance of adjustments of an object in a photograph. 

 

 

 



Directional Statistics 

 Directional statistics, or circular statistics, is a subset of statistics that analyzes unit 

vectors in n . Essentially, n  represents real coordinate space of n dimensions. n is literally 

defined as “a set of all n-tuples of real numbers” (Rootmath). A tuple is simply an ordered list of 

elements. For example, the vector  

 1 2,v v v=  

 is a 2-tuple, as it contains two components. Therefore,  

2v . 

The vector  

 1 2 3, ,u u u u=  

is a 3-tuple, as it contains three components.  Therefore,  

3u . 

The vector  

 1 2 3, , ,... nw w w w w=  

is a n-tuple, as it contains n components. Therefore,  

nw  

(Rootmath). Thus, directional statistics essentially studies a group of unit vectors that contain a n 

number of components and that have a defined direction. For the purposes of this investigation, 

both two- dimensional vectors such as v  and three-dimensional vectors such as u  will be 

analyzed, as the objective is both to provide an understanding of circular distribution and to 

estimate the illumination of an object inside a two-dimensional photograph. 



 Directional statistics also analyzes manifolds. A manifold is simply a collection of points 

that form a set. For example, one-dimensional manifold is a curve; a two-dimensional manifold 

is a surface. It is at this point that it is necessary to define “sphere”. A n-sphere (where n 

represents any natural number) is defined as a series of points in (n+1)-dimensional Euclidean 

space that are located a distance r (radius), which can be any positive real number, from the 

center. A n-sphere is denoted as Sn. Thus, a n-sphere may be generally defined as 

 1 :n nS x x r+=  = . 

For, a 0-sphere (denoted S0) is a pair of points at the ends of a one-dimensional line segment. 

This investigation will primarily analyze both 1-spheres and 2-spheres. A 1-sphere (denoted S1) 

is a circle. A 2-sphere (denoted S2) is “the set of all points in three-dimensional Euclidean space

3 ” (Weisstein, “Sphere”) that are located a distance r (radius) from the center. Essentially, this 

definition states that a sphere consists of a two-dimensional manifold (the surface) embedded 

within a three-dimensional space. The following image shows a 2-sphere, which I graphed using 

gnuplot, a command-line driven graphing program.  

 



The following is the command line that I used. 

set nokey 

set parametric 

set hidden3d 

set view 60 

set isosamples 30,20 

set xrange[-2.5 : 2.5] 

set yrange[-2.5 : 2.5] 

set zrange[-1 : 1] 

splot [-pi:pi][-pi/2:pi/2] cos(u)*cos(v), sin(u)*cos(v), sin(v) 

 

Circular Distribution 

 Directional data can be analyzed and graphed in terms of circular distributions. Circular 

distribution, or polar distribution, is a probability distribution in which the values of a random 

variable are “defined in terms of angles, generally lying in the range [0, 2π)” (“Circular 

Distribution”).  

 In order to analyze the data in question, it first must be “transformed into rectangular 

polar coordinates” (Marr). To do so, a unit circle, which has a radius of one, is utilized. Thus, the 

polar location is defined as “the angular measurement and its intersection with the unit circle” 

(Marr). This location is then placed “into a standardized Cartesian space” by “cosine and sine 

functions” (Marr). The cosine of angle a is defined as  

cos
1

x x
a x

r
= = = , 

(Marr) while the sine of angle a is defined as  

sin
1

y y
a y

r
= = = . 



(Marr). For example, one may consider the following data: 

Angle a cosa  (azimuth) sin a  (azimuth) 

353 0.99255 -0.1219 

165 -0.9659 0.25882 

118 -0.4695 0.88295 

73 0.29237 0.9563 

13 0.97437 0.22495 

275 0.08716 -0.9962 

126 -0.5878 0.80902 

247 -0.3907 -0.9205 

302 0.52992 -0.848 

42 0.74314 0.66913 

 

In order to calculate the above angle measures, I marked a spot on my desk and assigned it the 

coordinate (0,0); next, I drew the axes through this origin, aligning them with the cardinal 

directions. I then created vectors from the origin to the central points of ten objects on my desk 

and determined angle measurements between these vectors and the positive y-axis. The mean 

angle can be calculated with the equation 

sin
arctan( )

cos
r

a

a
 = , 

where sin a  is defined as 

1

sin
n

a

iy
n

==


  

and cosa  is defined as 



1

cos
n

a

ix
n

==


 ; 

The bar above the variables a, x, and y simply represents the mean. 

Thus, sin a is equivalent to 

10

1

sin

0.091455
10

a

iy == =


 

and cosa is equivalent to 

10

1

cos

0.120559
10

a

ix == =


. 

Thus, 

0.091455 180
arctan( ) 0.758591( ) 43.464076

0.120559
r


= = =  

The following is a graphical representation of this data.   

 



If more data was to be calculated, it would be more likely to be close to the mean. 

 Circular distributions have a standard deviation that is defined as  

2 2R x y= +  

(Marr), where R is essentially the equivalent to standard deviation except for the fact that it 

ranges from 0, which denotes “uniform dispersion” (Marr), and 1, which denotes “complete 

concentration” (Marr) in a singular direction. Thus, 

2 2(0.091455) (0.120559) 0.008364 0.014534 0.022898 0.151322R = + = + = =   

 A central idea of this investigation is to apply the concept of two-dimensional circular 

distributions to the third dimension. To accomplish this, it is necessary to examine von Mises-

Fisher distributions. 

 

Von Mises-Fisher Distributions 

 The von-Mises Fisher distribution is a probability distribution on a (n-1)-dimensional 

sphere in n . It is often known as the circular normal distribution.  

 One can perform realistic photographic manipulations quite effortlessly with programs 

such as Photoshop, as they allow one to execute a variety of image operations. However, despite 

the fact that photographs depict three dimensions, these programs are restricted, particularly in 

terms of geometric correction, to two-dimensional manipulations. In other words, “the 

photograph ‘knows’ only the pixels” (Kholgade Banerjee) of the two-dimensional projection of 

the object, not its three-dimensional structure. In order to perform three-dimensional 

manipulation of objects in a photograph, one must edit “‘what we know’ about the scene beside 

the photograph” (Kholgade Banerjee) as opposed to “simply editing ‘what we see’” (Kholgade 

Banerjee). One of the elements necessary to the performance of realistic manipulations in three 



dimensions is the generation of accurate lighting effects. It is necessary to calculate the original 

illumination of the object, as one must then project it onto the corrected object. Assuming “light 

sources are distant…, illumination can be approximated as a mixture of light distributions on a 

unit sphere of light directions” (Panagopoulos). Essentially, this means that the illumination of 

an object can be represented as a set of vectors of N random three-dimensional unit vectors that 

“produce N samples of the illumination environment” (Panagopoulos). The von Mises-Fisher 

distribution can be used as a method to calculate these distributions.  

 The von Mises- Fisher distribution is defined as  

( )( , , ) ( )
T x

p pf x C e   = , 

(Dhillon) where x represents a vector. ( )
p

C   is the normalization constant, which is defined as 

a constant by which a function must be multiplied so that the area under the graph is equivalent 

to one. Essentially, this allows for the function in question to become a probability density 

function. The normalization constant is defined as  

1
2

2

1
2

( )

(2 ) ( )

p

p p

p

C

I




 

−

−

=  ; 

(Dhillon) I denotes a modified Bessel function of the first kind, which behave like cosine graph. 

Bessel functions form the basis for series expansion (Weisstein, “Modified Bessel Function of 

the First Kind”). However, it is not necessary to examine Bessel functions for the purposes of 

this investigation, as when 3p = , 3( )C   is defined as 

3( )
4 sinh 2 ( )

C
e e 

 


   −
= =

−
, 



(Kholgade Banerjee) where sinh  is the hyperbolic sine function, which can also be expressed 

with the constant e.   is the concentration parameter. Essentially, the greater the value of , the 

higher the concentration of the distribution around the mean direction  . The following is a 

graphic example of three von Mises-Fisher distributions. 

 

(“Pattern Recognition”) 

1 =  for the data in blue, 10 = for data in green, and 100 =  for the data in red. The mean 

direction   is represented by the blue, green, and red arrows respectively. Thus, one can observe 

the aforementioned description of  . When 0 = ,  the distribution is uniform on the sphere. For 

0  , the distribution is unimodal, which means that the data has a singular, clear peak.  is 

defined as 

2

2

( )
ˆ

1

R p R

R


−
=

−
. 

(Dhillon) ̂  denotes an estimator of   ; R  is the mean resultant length, which is defined as 



r
R

n
=

, 

in which r represents the resultant length and n represents the sample size. 

 The following is a side view of Cloud Gate (or as it is more commonly known, The 

Bean), which is a public outdoor work in Chicago, Illinois that was created by British artist 

Anish Kapoor (“Art and Architecture”).  

 

 

(Hess) 

The following is a front view. 

 

(“Art and Architecture”) 

I chose to examine The Bean due to its stainless steel surface, as I knew that it would be easier to 

estimate illumination from a highly reflective surface. I then asked myself what the result would 

be if I estimated the illumination of The Bean; I thought it would be artistically interesting to 

examine the outcome of a rotation or a flip of The Bean, as this would be a manipulation of the 

artist’s original objective (which was the theme of distorted perception). 



 Using the first image, I estimated three values for the concentration parameter  : 4 =  

for the blue data, 40 = for the red data, and 400 = for the green data. If one looks at the 

image, one will see that the data is extremely concentrated around the mean, but then 

progressively spreads out. I therefore used three different parameters for   in order to account 

for all of the data. I then found  3( )C  . For example,  

3 4 4

4 4
(4) 0.011664

4 sinh 4 2 ( )
C

e e  −
= = =

−
 

 I calculated the mean direction   of the data to be 

 0.419643,0.649642,0.633929 =   

I then generated random vectors that corresponded to both  and  . The following are a few 

examples. 

 0.420173,0.652837,0.630284v =  

 0.486542,0.695302,0.528992u =  

 0.475483,0.635281,0.608548w =  

 0.434578,0.678532,0.592230a =  

 0.453876,0.610721,0.648858b =  

 0.486740,0.672452,0.557577c =  

 0.429763,0.645987,0.630876d =  

 0.489532,0.605764,0.627223e =  

 0.422587,0.652824,0.628682f =  



 0.435847,0.627943,0.644767g =  

Using this data, I then created the following graphical representation, which is modeled after a 

graph in the article titled “Pattern Recognition”. 

 

Thus, the following is the estimated illumination of The Bean in that specific photograph. 

 

I modeled the above representation after a graph in the investigation titled "3D Object 

Manipulation in a Single Photograph Using Stock 3D Models." This is the illumination that will 

need to be projected onto the adjusted object. 

 

 

 



Conclusion 

 As stated in the introduction, the aim of this investigation was to explore directional 

statistics with the ultimate goal of analyzing how one can calculate the illumination estimation 

necessary to the performance of plausible three-dimensional manipulations of an object in a 

photograph. 

 I began this exploration with a vague notion that I wanted to research two-dimensional 

and three-dimensional vectors, specifically in photography. After some research, I discovered the 

investigation conducted by researchers at Clarkson University, Carnegie Mellon University, and 

the University of California, Berkeley (the title of which is “3D Object Manipulation in a Single 

Photograph Using Stock 3D Models”). I was immediately interested in the concept. The idea, 

which I mentioned in the introduction, is that one can manipulate objects in photographs in the 

third dimension; this is as fascinating as it is revolutionary. It is essentially a “new and 

improved” version of programs such as Photoshop. 

 The implications of this concept, which I also briefly commented upon in the 

introduction, are quite monumental. As I stated, the phrase “a picture is worth a thousand words” 

is now essentially void. Photography has followed in the footsteps of other means of 

communication in that it is now even more susceptible to human interference. The advancement 

of technology and mathematics has allowed for the successful completion of photographic 

manipulations, such as the rotation of a chair in an office (as is shown in the picture below) or of 

a house in a suburb.  

 

(Kholgade) 



More seriously, it has facilitated the potential interference of various parties in certain critical 

situations, such as in journalistic or police investigations or in the creation of an unbiased 

collection of historical events. An example of such is the following image, as a photographic 

manipulation of the Grumman TBF Avengers would have changed the course of that particular 

World War II battle. 

 

 (Kholgade) 

 Naturally, this investigation has its limitations, the most substantial of which is the von 

Mises-Fisher distribution itself. Much of the material gathered, specifically the equations, is from 

a multitude of sources; this is certainly beneficial in determining the accuracy of the information. 

My intention throughout the investigation was to maintain the integrity of the information found 

in the sources. Nevertheless, the research done in this area is extremely advanced; my 

understanding and  explanation of the concepts may thus be at best oversimplified and at worst 

inaccurate. Another major limitation was the difficulty of the acquisition of the programs 

necessary to the completion of investigation. For example, it was challenging for me to find and 

utilize the graphing program gnuplot. Because I have no real experience with commands, even 

graphing a sphere proved to be problematic. As in any investigation, there is also always a 

possibility of human error in the gathering of data. 

 In general, this project has been a chance for me to explore and a mathematical topic that 

I never would have otherwise; although it was quite challenging, it has also been enjoyable. 
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