Geometry Review Topics – Chapter 8

- Radius/tangent formulas with circles
 - o A radius/tangent forms a right angle, allowing use of trig ratios and Pythagorean theorem
 - \circ ~ Tangent/tangent angles are add up to $~180^{\circ}$ with minor arc they form
- Circumference and arc length of circles
 - Circumference: $C = 2\pi r$ or $C = \pi d$
 - r is the radius of the circle and d the diameter

• Arc Length:
$$L = 2\pi r \left(\frac{A}{360}\right)$$
 or $L = r\theta$

- r is the radius, A is the central angle in degrees, and heta is the central angle in radians
- Area and sector areas of circles
 - Area: $A = \pi r^2$
 - r is the radius of the circle

• Sector Area:
$$A_{sector} = \pi r^2 \left(\frac{A}{360}\right)$$
 or $A_{sector} = \frac{1}{2}\theta r^2$

- r is the radius, A is the central angle in degrees, and $\, heta\,$ is the central angle in radians
- Surface area and volume of circular solids

• Cylinder:
$$SA = 2\pi r^2 + 2\pi rh$$
 and $V = \pi r^2 h$

r is the radius of the base, h is the height

• Cone:
$$SA = \pi r l + \pi r^2$$
 and $V = \frac{1}{3}\pi r^2 h$

- r is the radius of the base, l is the slant height, h is the height
- Areas of equilateral and isosceles triangles

0

Equilateral triangle only:

$$A = \frac{s^2 \sqrt{3}}{4}$$

- s is the length of one side of the triangle
- Any triangle (given 1 side and perpendicular height): $A = \frac{1}{2}bh$
 - b is the base, h is the height, base and height are perpendicular
- Non-right triangle (given 2 sides and included angle): $A = \frac{1}{2}ab\sin\theta$
 - a and b are any two sides in a triangle, $\, heta \,$ is the angle between
- Any triangle (given 3 sides and no angles): $A = \sqrt{s(s-a)(s-b)(s-c)}$
 - a,b, c are the side lengths, s is the semiperimeter
- Special right triangles (triples, 30-60-90, 45-45-90)
 - o 4 main triples: 3-4-5, 5-12-13, 8-15-17, 7-24-25
 - 30-60-90: $x x\sqrt{3} 2x$
 - 45-45-90: $x x x\sqrt{2}$
- Basic trig ratios (sin, cos, tan)

• SOH CAH TOA

$$\circ \quad \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} , \ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} , \ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}$$