Geometry Review Topics - Chapter 8

- Radius/tangent formulas with circles
- A radius/tangent forms a right angle, allowing use of trig ratios and Pythagorean theorem
- Tangent/tangent angles are add up to 180° with minor arc they form
- Circumference and arc length of circles
- Circumference: $C=2 \pi r$ or $C=\pi d$
- r is the radius of the circle and d the diameter
- Arc Length: $L=2 \pi r\left(\frac{A}{360}\right)$ or $L=r \theta$
- $\quad r$ is the radius, A is the central angle in degrees, and θ is the central angle in radians
- Area and sector areas of circles
- Area: $A=\pi r^{2}$
- r is the radius of the circle
- Sector Area: $A_{\text {sector }}=\pi r^{2}\left(\frac{A}{360}\right)$ or $A_{\text {sector }}=\frac{1}{2} \theta r^{2}$
- r is the radius, A is the central angle in degrees, and θ is the central angle in radians
- Surface area and volume of circular solids
- Cylinder: $S A=2 \pi r^{2}+2 \pi r h$ and $V=\pi r^{2} h$
- r is the radius of the base, h is the height
- Cone: $S A=\pi r l+\pi r^{2}$ and $V=\frac{1}{3} \pi r^{2} h$
- r is the radius of the base, l is the slant height, h is the height
- Areas of equilateral and isosceles triangles
- Equilateral triangle only: $A=\frac{s^{2} \sqrt{3}}{4}$
- s is the length of one side of the triangle
- Any triangle (given 1 side and perpendicular height): $A=\frac{1}{2} b h$
- b is the base, h is the height, base and height are perpendicular
- Non-right triangle (given 2 sides and included angle): $A=\frac{1}{2} a b \sin \theta$
- $\quad \mathrm{a}$ and b are any two sides in a triangle, θ is the angle between
- Any triangle (given 3 sides and no angles): $A=\sqrt{s(s-a)(s-b)(s-c)}$
- $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the side lengths, s is the semiperimeter
- \quad Special right triangles (triples, 30-60-90, 45-45-90)
- 4 main triples: 3-4-5, 5-12-13, 8-15-17, 7-24-25
- 30-60-90: $x-x \sqrt{3}-2 x$
- 45-45-90: $x-x-x \sqrt{2}$
- Basic trig ratios (sin, cos, tan)
- SOH CAH TOA
- $\sin \theta=\frac{\text { Opposite }}{\text { Hypotenuse }}, \cos \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}, \tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$

