\qquad
\qquad

Unit 01 - Intro to Geometry

Key Terms:			Important Concepts/Standards (I can...):	
Point	Congruent Segments	Segment Bisector	\bullet	I can label points, segments, rays, lines, and planes.
Segment	Congruent Angles	Segment Trisector	\bullet	I can find missing lengths using segment addition.
Ray	Tick marks	Complementary Angles	\bullet	I can find missing angles using angle addition.
Line	Union	Supplementary Angles	• I can identify the union and intersection of	
Plane	Intersection	Vertical Angles		segments, rays, and lines.
Collinear	Midpoint	Linear Pair		
Coplanar				

Unit 01 (Intro to Geometry) - Review Problems

Use the diagram.

1. Give another name for plane M.
2. Name a line in the plane.
3. Name a line intersecting the plane.
4. Name two rays.
5. Name a pair of opposite rays.
6. Name a point not in plane M.

7.) Point C is between points B and D on $\overline{B D}$. You are given $B C=12 x-6, B D=24$, and $C D=8 x$.
a. Draw a diagram that illustrates the information above.
b. Write and solve an equation to find the value of x.
c. Find the lengths of $\overline{B C}$ and $\overline{C D}$.
d. Is C the midpoint of $\overline{B D}$? Briefly explain your reasoning.

Use the exterior angle theorem to find the value of \boldsymbol{x}.
8.)

9.)

10.) If $m \angle 1=(2 x+13)^{\circ}$ and $m \angle 2=\left(x^{2}-1\right)^{\circ}$, find $m \angle 3$.
11.) Find $m \angle G A E$.

12.) In the diagram, find $m \angle D F E, m \angle B F C$, and $m \angle B F E$.

13.) Determine the union (\cup) or intersection (\cap) of the following statements.
a $\overline{\mathrm{AB}} \cap \overline{\mathrm{BC}}=$ \qquad
b $\underset{\mathrm{EC}}{\stackrel{\mathrm{EA}}{\longleftrightarrow}}=$ \qquad
c $\overleftrightarrow{\mathrm{AC}} \cap \overleftrightarrow{\mathrm{DB}}=$ \qquad
d $\overline{\mathrm{DC}} \cap \overline{\mathrm{AB}}=$ \qquad
e $\overrightarrow{\mathrm{AC}} \cap \overrightarrow{\mathrm{EC}}=$

Unit 02 - Parallel Lines

Key Terms:
Parallel Lines
Transversal
Perpendicular
Skew Lines
Straight Angles
Right Angles
Alternate Interior Angles
Alternate Exterior Angles
Corresponding Angles
Same Side Interior Angles
Same Side Exterior Angles

Important Concepts/Standards (I can...):

- I can identify and label parallel lines and planes.
- I can identify skew lines from a diagram.
- I can define, recognize from a diagram, and write the symbols for parallel and perpendicular.
- I can name lines associated with parallel lines, including AIA, AEA, Corresponding, SSI, and SSE.
- I can find the measures of angles associated with parallel lines using congruent and supplementary relationships.
- I can find the measures of missing angles using the triangle sum and exterior angle theorems.

Unit 02 (Parallel Lines) - Review Problems

14.) List one pair of alternate interior angles.
15.) What name do we give the angle pair of $\angle 2$ and $\angle 8$?
16.) If $a \| b$ and $m \angle 5=121.7^{\circ}$, what is $m \angle 2$?
17.) If $a \| b$, are $\angle 4$ and $\angle 6$ congruent or supplementary? Briefly explain.

18.) Find the value of \boldsymbol{x} in the Crook problem shown.

19.) Is $c \| d$? Show your work and briefly explain your answer.

Unit 03 - Transformations

Key Terms:		Important Concepts/Standards (I can...):
Transformation	Reflection	- I can identify the 3 rigid motion transformations.
Preimage	Line of Symmetry	- I can determine preimage and image of a point under a
Image	Rotation	transformation given a graph or coordinates.
Translation	Rotation Symmetry	- I can translate a point given words, a rule, or a vector.
Translation Rule Vector Form	Angle or Rotation Clockwise	- I can graph identify and draw the lines representing the x-axis, y axis, $y=x$, and $y=-x$.
Composition	Counterclockwise	- I can reflect a point or figure over a line.
Prime Notation		- I can rotate a figure $90^{\circ}, 180^{\circ}$, or 270° both clockwise and counterclockwise. - I can perform a composition transformation (up to 3) using translations, reflections, and rotations.

20.) For the transformation shown to the right;
a.) Describe the translation in words.
b.) Write a rule describing the translation.
c.) Write the component form of the vector for this translation.

Use the translation rule $(x, y) \rightarrow(x-5, y+7)$ to answer the questions below.
21.) Determine the coordinates of B if $B^{\prime}(0,-10)$. 22.) Determine the coordinates of C^{\prime} if $C(-1,-2)$.
23.) Composition Transformation. A segment with endpoints at $J(2,4)$ and $K(-1,1)$ undergoes three consecutive transformations. List the coordinates after each transformation. Use the coordinate plane if you wish, but you are not required to graph anything.

- Rotated 180° around the origin
- Translated under the rule $(x, y) \rightarrow(x+4, y-2)$
- Reflected over the line $y=-x$

$$
\begin{aligned}
& J^{\prime \prime}(, \quad) \\
& K^{\prime}(, ~, ~) \\
& J^{\prime \prime \prime}(, \quad) \\
& K^{\prime \prime}(, ~) \\
& J^{\prime \prime \prime}(, ~) \\
& K^{\prime \prime \prime}(, ~)
\end{aligned}
$$

Unit 04 - Congruent Polygons

Key Terms:
Congruent Triangles
Congruent Figures
Corresponding Parts
Definition
Theorem
Reflexive Property
Triangle Congruency Theorems

Important Concepts/Standards (I can...):

- I can identify and label parallel lines and planes.
- I can identify skew lines from a diagram.
- I can name lines associated with parallel lines, including AIA, AEA, Corresponding, SSI, and SSE.
- I can find the measures of angles associated with parallel lines using congruent and supplementary relationships.
- I can find the measures of missing angles using the triangle sum and exterior angle theorems.

Decide whether the triangles can be proven congruent by the given triangle congruence theorem. If not, state what information is needed.
24.) $\triangle I J H \cong \triangle K H J$ by SSS

25.) $\triangle T N S \cong \triangle U H S$ by ASA

For each problem, give the correct naming order of the congruent triangles. Write that name in order on the lines for the problem number (see box at bottom). Also, indicate which postulate or theorem is being used.

