<u>Topic List</u>

- Complex Numbers (**#2-10**)
 - (3F) Real vs Imaginary parts
 - \circ (3F) Modulus (Notation |z| and using Pythagorean Theorem to determine distance from (0,0))
- Operations with Complex Numbers (#2-5,8,10)
 - o (3F) Addition and subtraction (Like terms, real and imaginary)
 - o (3G) Multiplication (Simplifying with powers of i)
 - o (3G) Division (Complex conjugates)
 - (3G) Solving for the complex number z (using add, subt, mult, and div)
- Higher Powers of i and Complex Roots (#6-8,10)
 - (3H) Patterns with powers of i repeating every 4 powers $(i^0 = 1, i^1 = i, i^2 = -1, i^3 = -i)$
 - (3H) Complex Roots (using $a^2 b^2$ = Real and 2ab = Imaginary)
- Synthetic Division and Polynomial Roots (Both real and complex) (#1,5)
 - o (3J and 3K) Real Roots and Rational Root Theorem (3K #5,6 are important!)
 - o (3L) Complex Roots and Conjugate Root Theorem (Complex roots exist in conjugate pairs)
- Systems of Equations (**#9**)
 - o (3R) Solving 3 Variable Systems

1. (a) Show that p = 2 is a solution to the equation $p^3 + p^2 - 5p - 2 = 0$.

(b) Find the values of a and b such that $p^3 + p^2 - 5p - 2 = (p-2)(p^2 + ap + b)$.

(c) Hence find the other two roots to the equation $p^3 + p^2 - 5p - 2 = 0$.

Name: _____

2. Find the values of *a* and *b*, where *a* and *b* are real, given that (a + bi)(2 - i) = 5 - i.

3. Given (5+zi)(2-i) = 2z+8i, find the value of z in the form a + bi.

4. Given that (a + i)(2 - bi) = 7 - i, find the value of *a* and of *b*, where $a, b \in \mathbb{Z}$.

5. Given that 2 + i is a root of the equation $x^3 - 6x^2 + 13x - 10 = 0$ find the other two roots.

6. Find the two square roots of 6-8i.

7. Find the two square roots of 5+12i.

8. Expand $(2-3i)^4$, expressing your answer in the form a+bi.

9. Solve the following 3 variable systems.

(a)
$$2x - 3y + z = 10$$
(b) $2x + 14y + 9z = -7$ $5x + 2y + 2z = 15$ $4x - 7y - 3z = 4$ $x + 4y - 2z = -3$ $10x - 28y - 6z = 5$

10. Evaluate the following expressions.

(a)
$$3(4-7i) \cdot (3-i)$$
 (b) $\frac{(1+2i)^2}{5-2i}$ (c) $(1-i)^{20}$