\qquad
\qquad

Topic List

- Complex Numbers (\#2-10)
- (3F) Real vs Imaginary parts
- (3F) Modulus (Notation $|z|$ and using Pythagorean Theorem to determine distance from $(0,0)$)
- Operations with Complex Numbers (\#2-5,8,10)
- (3F) Addition and subtraction (Like terms, real and imaginary)
- (3G) Multiplication (Simplifying with powers of i)
- (3G) Division (Complex conjugates)
- (3G) Solving for the complex number z (using add, subt, mult, and div)
- Higher Powers of i and Complex Roots (\#6-8,10)
- $(3 \mathrm{H})$ Patterns with powers of i repeating every 4 powers $\left(i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i\right)$
- $(3 \mathrm{H})$ Complex Roots (using $a^{2}-b^{2}=$ Real and $2 a b=$ Imaginary)
- Synthetic Division and Polynomial Roots (Both real and complex) (\#1,5)
- (3J and 3K) Real Roots and Rational Root Theorem (3K \#5,6 are important!)
- (3L) Complex Roots and Conjugate Root Theorem (Complex roots exist in conjugate pairs)
- Systems of Equations (\#9)
- (3R) Solving 3 Variable Systems

1. (a) Show that $p=2$ is a solution to the equation $p^{3}+p^{2}-5 p-2=0$.
(b) Find the values of a and b such that $p^{3}+p^{2}-5 p-2=(p-2)\left(p^{2}+a p+b\right)$.
(c) Hence find the other two roots to the equation $p^{3}+p^{2}-5 p-2=0$.
2. Find the values of a and b, where a and b are real, given that $(a+b i)(2-\mathrm{i})=5-i$.
3. Given $(5+z i)(2-i)=2 z+8 i$, find the value of z in the form $a+b i$.
4. \quad Given that $(a+i)(2-b i)=7-i$, find the value of a and of b, where $a, b \in \mathbb{Z}$.
5. Given that $2+i$ is a root of the equation $x^{3}-6 x^{2}+13 x-10=0$ find the other two roots.
6. Find the two square roots of $6-8 i$.
7. Find the two square roots of $5+12 i$.
8. Expand $(2-3 i)^{4}$, expressing your answer in the form $a+b i$.
9. Solve the following 3 variable systems.
(a) $2 x-3 y+z=10$
$5 x+2 y+2 z=15$
$x+4 y-2 z=-3$
(b) $2 x+14 y+9 z=-7$
$4 x-7 y-3 z=4$
$10 x-28 y-6 z=5$
10. Evaluate the following expressions.
(a) $3(4-7 i) \cdot(3-i)$
(b) $\frac{(1+2 i)^{2}}{5-2 i}$
(c) $(1-i)^{20}$
