\qquad
Functions and Relations - Chapter 2 Review \qquad

1. Given functions $f(x)=2 x+1$ and $g(x)=x^{3}$, find the function $\left(f^{-1} \circ g\right)^{-1}$.
2. A function is called self-inverse if $f(x)=f^{-1}(x)$ for all x in the domain.
(a) Show that $f(x)=\frac{1}{x}, x \neq 0$ is a self-inverse function.
(b) Find the value of the constant k so that $g(x)=\frac{3 x-5}{x+k}, x \neq-k$ is a self-inverse function.
3. Consider the functions given below.

$$
f(x)=2 x+3 \text { and } g(x)=\frac{1}{x}, x \neq 0
$$

(a) Find $(g \circ f)(x)$ and write down the domain of the function.
(b) Find $(f \circ g)(x)$ and write down the domain of the function.
4. Functions g and h are defined by $g(x)=\sqrt{x}$ and $h(x)=\frac{2 x-3}{x+1}, x \neq-1$.
(a) Find the range of h.
(b) Solve the equation $h(x)=0$.
(c) Find the domain and range (HARD!) of $g \circ h$.
5. The graph of $y=f(x)$ for $-2 \leq x \leq 8$ is shown. On the set of axes provided, sketch the graph of $y=\frac{1}{f(x)}$, clearly showing any asymptotes and indicating the any maximum or minimum values.

6. Let $f(x)=\frac{1-x}{1+x}$ and $g(x)=\sqrt{x+1}, x>-1$.

Find the set of values of x for which $f(x) \leq g(x)$.
7. Let $g(x)=x+1$ and $f(x)=\frac{4 x}{x-2}, x \neq 2$. If $h(x)=(f \circ g)(x)$, find
(a) $h(x)$;
(b) $\quad h^{-1}(x)$.
8. Let $f(x)=\sqrt{x+4}, x \geq-4$ and $g(x)=x^{2}, x \in \mathbb{R}$.
(a) Find $(g \circ f)(3)$.
(b) Find $f^{-1}(x)$.
(c) Write down the domain and range of f^{-1}.
9. State the domain of the function $f(x)=\frac{x^{2}-9}{\sqrt{x}-9}$.
10. The graph of $f(x)=\frac{a x+b}{x+c}$ is shown below. Find the values of $a, b, c \in \mathbb{R}$.

11. State the domain of the function $g(x)=\sqrt{\frac{2 x}{2-x^{2}}}$.

