(4) Pythagorean Theorem and Midpoint Theorem

Slope-Intercept Form y = mx + b• Slope • Rate of change (per) • Coefficient • y-intercept • Initial "value" • Constant

Slopes

- Parallel Lines = Same slope
- Perpendicular Lines = Slopes are opposite reciprocals

Fill in the missing slopes in the table below.

Slope	Slope of Parallel Line	Slope of Perpendicular Line
$\frac{2}{3}$	<u>~</u> 3	$-\frac{5}{3}$
-5 = - 5	<u>-5</u>	15
$4\frac{1}{5} = \frac{\lambda 1}{5}$	<u>21</u> 5	- 5 / ₁
$1.6 = \frac{16}{10} = \frac{8}{5}$	ماي	-5

ACT/SAT Example Which two lines are perpendicular? y = 5x + 2 and 2y - 10x = 4 y = 5x + 1 and y = 4x + 2Not one. y = 3x + 1 and $y - 4x = 6 \rightarrow y = 12x + 2$ y = 12x + 2 and $y + 2x = -4 \rightarrow y = 12x + 2$

Midpoint Formula

The midpoint of a segment can be found using the formula:

$$M(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
Average of x-values
Average of y-values

Example: Find the midpoint of a segment with endpoints at (1,-3) and (-2,0)

Midpoint Formula

2.) Find the coordinate of the midpoint, M, of segment ST.

(4) Pythagorean Theorem and Midpoint Theorem

