Conditional Probability

For two events A and B the probability of A occurring given that B has occurred can be found using the equation:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \xrightarrow{\text{Probability of } A \text{ and } B}$$
Probability of A given B

This formula leads to one of the more common probability formulas used, which we will address later on.

Conditional Probability

Exercise 6F Modified

 In a class of 25 students, 15 study French, 13 study Malay and 5 study neither language.
 One of these students is chosen at random.

U P(M) =

 $P(F \cap M) =$

 $P(F \mid M) =$

 $P(M \mid F) =$

Mr. Urbanc rolls a fair, 6-sided dice. Let A and B be defined as:

A = obtain a score of at least 4

B = obtain an even score

- a.) Write down P(A) and P(B).
- b.) Draw a tree diagram to illustrate all the possibilities.

Use it to show $P(A \cap B) = P(A|B) \times P(B)$.

Mutually Exclusive Events

If two events are mutually exclusive, then they cannot occur at the same time. Thus, $P(A \cap B) = \emptyset$.

A and B are mutually exclusive.

A and A' are mutually exclusive.

B and B' are mutually exclusive.

IndepenInInIndependent Events

If two events are independent, the probability of the two events occurring simultaneously is equal to the product of the individual probabilities.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Formula for Conditional Probability

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

Rearrange the equation above

$$P(A \cap B) = P(A) \cdot P(B)$$

Independent Events

The probability of Ais unaffected by BMultiplication Property for

Independent Events

Extensions

$$P(A \mid B) = P(A)$$

The probabilities of A and A' $P(A \mid B') = P(A)$ are unaffected by any of the P(A'|B) = P(A')givens, in these cases B and B'.

$$P(A'|B') = P(A')$$

 $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$ 3 independent events

Example #1

Independent events A and B are such that P(B) = 0.4 and P ($A \cup B$) = 0.75. Find these probabilities:

- **a** P(A)
- **b** $P(A \cap B')$

Homework

- 6G p.305 #1-3
- 6J p.315 #1,3-5,10
- 6K p.320 #4,5,8,9