# 5.2 - Congruent Polygons

## 5.2 - Congruent Polygons

<u>Congruent Triangles</u> = All pairs of corresponding <u>parts</u> are congruent.

All triangles have 6 "parts"

3 Sides 
$$\longrightarrow \overline{AB}, \overline{AC}, \overline{BC}$$

3 Angles 
$$\angle A, \angle B, \angle C$$



#### Congruent Triangles



All corresponding sides are congruent

$$\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}, \overline{BC} \cong \overline{EF}$$

• All corresponding angles are congruent

$$\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$$

## Congruent Triangles



<u>Congruent Polygons</u> = All pairs of corresponding *parts* are congruent.

 $PENTA \cong WOULD$ 

Congruent Parts



#### **Congruent Triangles**

- Congruent triangles are drawn by applying one or more *transformations* to the original triangle.
- <u>Congruency Transformations</u> include:

/- Translations

- Reflections

Rotations

RIGID MOTIONS

### **Congruency Transformations**

1.) Translations = Move up/down/left/right only



 $\triangle ABC \cong \triangle DEF$ 

# 5.2 - Congruent Polygons

<u>Transformations = Transform or change of appearance</u>

2.) Reflections = Mirror image over a line



### Transformations (Cont.)

3.) Rotations = Spin/turn around a point



## Transformations (Cont.)

4.) Dilations/Reductions = Keep same general shape, but increase or decrease the size/scale.



 $\underline{\underline{Note:}}$  Since dilations and reductions change the size of an object, these are not congruency transformations.