3.1 - Intro to Parallel Lines and Planes

Mental Floss: Mon Oct 1st

 $\angle 1$ is supplementary to $\angle 2$, $\angle 1 = (12x + 60)^{\circ}$ and $\angle 2 = (7x + 30.7)^{\circ}$. Find $m\angle 3$.

3.1 - Parallel Lines and Planes

In Algebra 1 (2D), lines could do one of 3 things:

1.) Intersect each other

2.) Be parallel to each other

3.) Be on top of each other (same line)

3D Geometry

Parallel Lines = Lines that do not intersect but are in the same plane.

Skew Lines = Lines that do not intersect and are **not** in the same plane.

<u>Parallel Planes</u> = Planes that do not intersect.

$$U \parallel T$$
 Plane $U \parallel$ Plane T

Symbols and Notation for Parallel Lines

• "Tick marks" used in diagrams

$$g \overset{A}{\longleftarrow} \qquad \qquad B$$

• Notation for parallel lines

$$\overrightarrow{AB} \parallel \overrightarrow{CD}$$
 "Line AB is parallel to line CD" $g \parallel h$ "Line g is parallel to line h "

3.1 - Intro to Parallel Lines and Planes

Example #1 Identifying Lines and Planes

Think of each segment in the figure as part of a line. Which line(s) or plane(s) appear to fit the description?

- **a.** line(s) parallel to \overrightarrow{CD} and containing point A
- **b.** line(s) skew to \overrightarrow{CD} and containing point A
- **c.** line(s) perpendicular to \overrightarrow{CD} and containing point A
- \mathbf{d} . plane(s) parallel to plane EFG and containing point A

Example #2 Identifying Parallel and Perpendicular Lines

The given line markings show how the roads in a town are related to one another.

- a. Name a pair of parallel lines.
- **b.** Name a pair of perpendicular lines.
- **c.** Is $\overrightarrow{FE} \parallel \overrightarrow{AC}$? Explain.

Homework

- 3.1 p.129 #1,3-10,21,22,24
- 3.1 p.129 #2,15-18,23,25-28,30,31