Definition		
How to label	Points are labeled using a single, capital letter. It is important to use a capital letter because lowercase letters are used for labeling lines.	P。
Diagram		
HW Problems \& Examples		
Extra Information	Yound	

Station 4 - Planes

Definition	Planes are flat surfaces with no thickness, extending forever in all directions on that surface.
How to label	
Diagram	$R B \cdot A$
HW Problems \& Examples	1.1 \#6,8,34,55(b and c)
Extra Information	A plane is a 2-dimensional sheet, but can be drawn in 3-dimenstional space. This means it can be challenging to draw, as shown in the diagram above. There are multiple other ways to label the plane above. Here are a few examples: Plane $A C B$ Plane $B A C$ Plane $C A B$

Station 2 - Segments

Definition	A segment is section of a line consisting of two points (called endpoints) and all the points between them on the line.	
How to label	Segments are labelled using the two endpoints and a bar drawn above endpoin them. Since neither endpoint is more important than the other, the order you list them does not matter. Th actually the same segment!	$\begin{aligned} & \overline{A B} \\ & \overline{B A} \end{aligned}$
Diagram	A	\boldsymbol{B}
HW Problems \& Examples	1.1 \#12	
Important Information	Seements are also called known as Line segments sine they ree part of a	

Definition		
How to label	Rays are labeled using two point the first being the endpoint and the second being any point on the ray in the direction it extends. \qquad two letters always points right, regardless of what direction the ray actually extends.	$\begin{aligned} & \overrightarrow{A B} \\ & \overrightarrow{B A} \end{aligned}$
Diagram	In the diagram to the right; - The topis: $\overline{A B}$ - The middele is: $\overline{A B}$ - The obotom is: $\overline{B A}$	$\xrightarrow{\xrightarrow[A]{A} \quad \stackrel{B}{B}}$
HW Problems \& Examples	1.1 \#14	
Extra Information	If a ray contains more than 2 points, you can label it in multiple ways. The key is making sure the first letter is always the endpoint. For example, the ray to the right could be called $\overrightarrow{H A}$ or $\overrightarrow{H M}$	$\dot{H} \quad \vec{A} \quad \vec{M}$

Station 6 - Opposite Rays

Definition	Opposite Rays are two rays that (1) start at the same endpoint and (2) extend in opposite directions.
How to label	
Diagram	$\xrightarrow{\boldsymbol{D} \quad \boldsymbol{E} \quad \boldsymbol{F}}$
HW Problems \& Examples	1.1 \#15,50
Extra Information	$\begin{aligned} & \text { The keys to being opposite rays: } \\ & \text { 1. They must start at the same endpoint, in this example point E } \\ & \text { 2. They must extend in opposite directions, in this example one extends } \\ & \text { left and one extends right. } \\ & \text { When opposite rays are put together, they form a line! } \end{aligned}$

