Station 1 - Points

Definition	<u>Points</u> are locations in space with no dimension represented by a dot.	
How to label	Points are labeled using a single, capital letter. It is important to use a capital letter because lowercase letters are used for labeling lines.	P_{ullet}
Diagram	P	•
HW Problems & Examples	<u>Points</u> are relatively easy and used in almost everything else we do. Almost every homework problem we do will use <u>points</u> in some way.	
Extra Information	You have already plotted points on a number and on a 2-dimensions coordinate graph. Eventually, we will start plotting points in 3-dimensions!	

Station 2 - Segments

Definition	A <u>segment</u> is section of a line consisting of two <u>points</u> (called <u>endpoints</u>) and all the <u>points</u> between them on the <u>line</u> .	
How to label	$\frac{\text{Segments}}{AB}$ are labelled using the two endpoints and a bar drawn above them. \overline{AB} Since neither $\frac{endpoint}{}$ is more important than the other, the order you list them does not matter. The two segments to the right are actually the same segment!	
Diagram	$A \qquad B$	
HW Problems & Examples	1.1 #12	
Important Information	Segments are also called known as Line Segments since they are part of a line.	

Station 3 - Lines

Definition	<u>Lines</u> are straight paths with no thickness extending forever in <i>opposite</i> directions.	
How to label	Lines are labeled by choosing any TWO points on the line with a double-sided arrow on top. You may also label a line using a single, lowercase letter. In the diagram below, you can label it line m.	All the <u>seven</u> of the following are correct ways to label the line below: $\overrightarrow{AB} \overrightarrow{AG} \overrightarrow{GB}$ $\overrightarrow{BA} \overrightarrow{GA} \overrightarrow{BG} \overrightarrow{BG}$ Line m
Diagram	$M \stackrel{A}{\longleftrightarrow} M \stackrel{B}{\longleftrightarrow}$	
HW Problems & Examples	1.1 #4,7	
Extra Information	Lines extend forever in opposite directions, and thus have no length. Only two points are needed to label a line. You never use three or more points to label a line. For example, an incorrect way to label the line above would be: \overrightarrow{AGB}	

Station 4 - Planes

Definition	<u>Planes</u> are flat surfaces with no thickness, extending forever in all directions on that surface.	
How to label	Planes are labeled in one of two ways. The first is by writing the word plane and listing any 3 points in that plane that do NOT lie on the same line. The second way is by using an uppercase script letter, similar to a fancy font.	In the diagram below, you can label the plane either: Plane ABC or Plane R
Diagram	R A . C	
HW Problems & Examples	1.1 #6,8,34,55(b and c)	
Extra Information	A <u>plane</u> is a 2-dimensional sheet, but can be drawn in 3-dimenstional space. This means it can be challenging to draw, as shown in the diagram above. There are multiple other ways to label the plane above. Here are a few examples: $Plane\ ACB Plane\ BAC Plane\ CAB$	

Station 5 - Rays

Definition	Rays are a part of a line that starts at a extends forever in one direction.	one <u>point</u> (called the <u>endpoint</u>) and
How to label	Rays are labeled using two points, the first being the endpoint and the second being any point on the ray in the direction it extends. Important: The arrow on top of the two letters always points right, regardless of what direction the ray actually extends.	\overrightarrow{AB} \overrightarrow{BA}
Diagram	In the diagram to the right; • The top is: \overrightarrow{AB} • The middle is: \overrightarrow{AB} • The bottom is: \overrightarrow{BA}	$\begin{array}{cccc} A & B \\ \hline A & B \\ \hline A & B \\ \end{array}$
HW Problems & Examples	1.1 #14	
Extra Information	If a <u>ray</u> contains more than 2 <u>points</u> , you can label it in multiple ways. The key is making sure the first letter is always the <u>endpoint</u> . For example, the <u>ray</u> to the right could be called \overrightarrow{HA} or \overrightarrow{HM} .	H A M

Station 6 – Opposite Rays

Definition	Opposite Rays are two rays that (1) start at the same endpoint and (2) extend in opposite directions.	
How to label	Opposite rays are simply rays, so the way we label them is the same.	In the diagram below, since they share a common endpoint and extend in opposite directions, the only pair of opposite rays are: ED EF
Diagram	D E F	
HW Problems & Examples	1.1 #15,50	
Extra Information	The keys to being opposite rays: 1. They must start at the same endpoint, in this example point E 2. They must extend in opposite directions, in this example one extends left and one extends right. When opposite rays are put together, they form a line!	

Collinear and Coplanar HW 1.1 #9,10,31,55(a)