If all three \qquad of one triangle are \qquad to all three \qquad of another triangle, then the two triangles are \qquad

If \qquad sides and the
\qquad angle of one triangle are congruent to
\qquad sides and the
\qquad angle of another triangle, then the two triangles are
\qquad —.

If \qquad angles and the
\qquad side of one triangle are congruent to
\qquad angles and the
\qquad side of another
triangle, then the two triangles are \qquad -.

Sides (Included):
Angles \#2:
_.

Cut along dotted line			Cut along dotted line SAS
Cut along dotted line Not			Cut along dotted line ASA

If all three sides of one triangle are congruent to all three sides of another triangle, then the two triangles are congruent.

SSS

If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

SAS

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

$$
\begin{array}{ll}
\text { Sides \#1: } & \overline{A B} \cong \overline{D E} \\
\text { Sides \#2: } & \overline{B C} \cong \overline{E F} \\
\text { sides \#3: } & \overline{A C} \cong \overline{D F}
\end{array}
$$

Sides \#1: $\quad \overline{G H} \cong \overline{K L}$
Angles (Included): $\angle H \cong \angle L$
Sides \#2: $\overline{H J} \cong \overline{L M}$

Angles \#1: $\angle P \cong \angle T$
Sides (Included): $\overline{P R} \cong \overline{T V}$
Angles \#2: $\quad \angle R \cong \angle V$

Sides (Non-Included): $\overline{A S} \cong \overline{B T}$

Right Angles: $\angle L \cong \angle M$
Hypotenuses: $\overline{D V} \cong \overline{E W}$
Legs: $\overline{D L} \cong \overline{E M}$

If two angles and the nonincluded side of one triangle are congruent to two angles and the non-included side of another triangle, then the two triangles are congruent.

AAS

If the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, then the two triangles are congruent.

HL

Other combination of sides and angles do not work for proving triangle congruency. Two common examples are AAA and SSA.

$\Delta \Delta$			CSS
Cut along dotted line HL			Cut along dotted line SAS
Cut along dotted line Not			Cut along dotted line ASA

