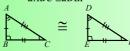

Congruent Triangles COMBINED

Congruent Triangles =

All pairs of corresponding *parts* are congruent.


All triangles have 6 parts

- 3 Sides $\longrightarrow \overline{AB}, \overline{AC}, \overline{BC}$
- 3 Angles $\longrightarrow \angle A, \angle B, \angle C$

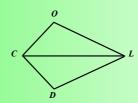
Congruent Triangles

 $\triangle ABC \cong \triangle DEF$

- · All corresponding sides are congruent $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}, \overline{BC} \cong \overline{EF}$
- All corresponding angles are congruent

 $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$

- What happens if you do not have all this information?
- What if we take away some of the tick marks on each triangle?
- What is the fewest number of tick marks we would need to prove the triangles congruent?

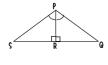


4 Things You Can "Assume" From a Diagram

- 1. Straight Angles
- Supplementary Angles
- Vertical Angles
- 4. Reflexive Property

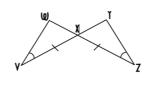
Reflexive Property

- A segment or angle is congruent to itself
 Makes a "copy" for you to use in multiple triangles


Δ___≅Δ___

Congruent Triangles COMBINED

TRIANGLE HINTS PAGE 1

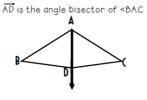

LABELING is so very, very, important!

REFLEXIVE SIDE:

VERTICAL ANGLES:

TRIANGLE HINTS PAGE 2

LABELING is so very, very, important!


MIDPOINT:

E is the midpoint of KW

ANGLE BISECTOR:

DC bisects <ACB

